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Summary
Background Identifi cation of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis 
infection to tuberculosis disease might lead to interventions that combat the tuberculosis epidemic. We aimed to 
assess whether global gene expression measured in whole blood of healthy people allowed identifi cation of prospective 
signatures of risk of active tuberculosis disease. 

Methods In this prospective cohort study, we followed up healthy, South African adolescents aged 12–18 years from 
the adolescent cohort study (ACS) who were infected with M tuberculosis for 2 years. We collected blood samples from 
study participants every 6 months and monitored the adolescents for progression to tuberculosis disease. A prospective 
signature of risk was derived from whole blood RNA sequencing data by comparing participants who developed 
active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to 
multiplex quantitative real-time PCR (qRT-PCR), the signature was used to predict tuberculosis disease in untouched 
adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and 
controls. Participants of the independent cohorts were household contacts of adults with active pulmonary 
tuberculosis disease. 

Findings Between July 6, 2005, and April 23, 2007, we enrolled 6363 participants from the ACS study and 4466 from 
independent South African and Gambian cohorts. 46 progressors and 107 matched controls were identifi ed in the 
ACS cohort. A 16 gene signature of risk was identifi ed. The signature predicted tuberculosis progression with a 
sensitivity of 66·1% (95% CI 63·2–68·9) and a specifi city of 80·6% (79·2–82·0) in the 12 months preceding 
tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA 
sequencing and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values 
<0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specifi city of 82·8% (76·7–86) in the 12 months 
preceding tuberculosis.

Interpretation The whole blood tuberculosis risk signature prospectively identifi ed people at risk of developing active 
tuberculosis, opening the possibility for targeted intervention to prevent the disease.

Funding Bill & Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union, and the 
South African Medical Research Council.

Introduction
A third of the population worldwide is infected with 
Mycobacterium tuberculosis,1 but less than 10% of these 
individuals will progress to have active tuberculosis 
disease during their lifetime; most individuals will remain 
healthy.2–6 Risk of progression is associated with age,7 
comorbidities such as HIV infection and diabetes 
mellitus, socioeconomic and nutritional compromise, and 
therapy with immune modulatory drugs such as tumour 
necrosis factor inhibitors, among others.8,9 Current assays 
for determining the presence of M tuberculosis infection, 
such as an interferon gamma release assay (IGRA) or 
tuberculin skin test (TST), cannot predict which infected 
individuals will develop active tuberculosis. 

Previous systems biology approaches have identifi ed 
diagnostic signatures that discriminate tuberculosis 

disease from latent M tuberculosis infection and from 
other disease states.10–21 For example, Berry and 
colleagues12 identifi ed and validated a 393 gene signature 
that allowed diff erentiation of people with active 
tuberculosis disease and latent infection. Anderson and 
colleagues14 identifi ed and validated a 53 gene signature 
that distinguished active tuberculosis from other diseases 
in African children with or without HIV infection. By 
contrast with the published diagnostic studies, our focus 
was on prospective signatures of risk that could be 
identifi ed in healthy individuals up to 2 years before 
clinical tuberculosis disease manifests.

Knowledge gained from this signature could lead to 
targeted antimicrobial therapy to prevent tuberculosis 
disease, as treating all people who are latently infected 
in endemic countries for 6–9 months is not feasible. 
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Other potential applications of biomarkers of risk of 
tuberculosis disease include assessment of response to 
drug therapy and targeted enrolment into effi  cacy trials 
of new tuberculosis vaccines and drugs. In view of the 
fact that a third of the world’s population is latently 
infected with M tuberculosis, our approach constitutes an 
opportunity to lessen the burden of disease. To this end, 
we aimed to assess whether global gene expression 
measured in whole blood of healthy people allowed 
identifi cation of prospective signatures of risk of active 
tuberculosis disease.

Methods
Study design and participants 
We included participants from several cohorts in this 
analysis. First, we assessed participants aged 12–18 years 
from the South African adolescent cohort study (ACS) who 
were infected with M tuberculosis to identify and validate a 
tuberculosis risk signature (fi gure 1). All adolescents 
whose parents or legal guardians provided written, 
informed consent and who provided written, informed 
assent themselves were enrolled. About half the 
participants from the ACS cohort were assessed at 
enrolment and every 6 months during 2 year follow-up; 
the other half were assessed at baseline and at 2 years. At 
enrolment and at each visit, clinical data were collected 
and 2·5 mL blood was collected directly into PAXgene 
blood RNA tubes (PreAnalytiX, Hombrechtikon, 
Switzerland), which were stored at –20°C.

Only adolescents with latent M tuberculosis infection at 
enrolment were included in the analysis aimed at 
identifi cation of a tuberculosis risk signature. Latent 
M tuberculosis infection was diagnosed by a positive 
QuantiFERON TB gold in-tube assay (Cellestis, 
Chadstone, Australia; >0·35 IU/mL) or a positive 
tuberculin skin test (0·1 mL dose of purifi ed protein 
derivative RT-23, 2-TU, Staten Serum Institute, Denmark; 
>10 mm), or both. According to South African policy, 
adolescents positive on these tests were not given therapy 
to prevent tuberculosis disease.22 Adolescents who 
developed active tuberculosis disease during follow-up 
were included as progressors. Tuberculosis was defi ned as 
intrathoracic disease, with either two sputum smears 
positive for acid-fast bacilli or one positive sputum culture 
confi rmed as M tuberculosis complex (mycobacterial 
growth indicator tube, BD BioSciences, NJ, USA). For 
each progressor, two matched controls that remained 
healthy during follow-up were selected and matched by 
age at enrolment, sex, ethnic origin, school of attendance, 
and presence or absence of previous episodes of 
tuberculosis disease. Participants were excluded if they 
developed tuberculosis disease within 6 months of 
enrolment to exclude early asymptomatic disease that 
could have been present at the time of assessment, or if 
they were HIV-positive. Before analysis, the ACS 
progressors and controls were randomly divided into 
training and test sets, at a ratio of 3:1 using the 
randomisation function in Excel.

Research in context

Evidence before this study
We searched the PubMed database for studies published before 
July 1, 2015, using the search criteria “tuberculosis AND risk AND 
blood AND (RNA OR microarray OR transcriptome OR 
RNA-Seq)”. The resulting scientifi c literature included several 
substantial analyses comparing the blood RNA profi les of 
individuals with active tuberculosis disease and healthy 
individuals. These important studies have established that the 
tuberculosis disease state is refl ected in the blood RNA profi le of 
the patient with tuberculosis with ongoing disease. The resulting 
literature also included several small studies reporting candidate 
host markers for tuberculosis disease risk that have not been 
rigorously assessed in independent cohorts. Repeating the 
search without the “(RNA OR microarray OR transcriptome OR 
RNA-Seq)” term yielded literature with established risk factors 
for tuberculosis disease, which have been summarised in several 
reviews. Despite these important studies and known 
tuberculosis risk factors, it is not possible to predict which 
individuals infected with Mycobacterium tuberculosis will develop 
active tuberculosis with tools.

Added value of this study
Our study expands the previous fi ndings by being the fi rst 
large-scale search for prospective correlates of risk of 

tuberculosis in healthy individuals before the onset of disease. 
We used unbiased high-throughput screening of host blood 
RNA profi les to identify new signatures of risk for 
tuberculosis. These signatures were confi rmed in the original 
cohort with targeted assays; these targeted assays were then 
successfully used to predict tuberculosis disease progression 
in two independent cohorts. Further meta-analyses of 
published datasets showed that the prognostic signatures 
might simultaneously serve as diagnostic signatures for 
tuberculosis.

Implications of all the evidence
Our study provides the fi rst demonstration that host blood 
RNA signatures can be used to predict progression to active 
tuberculosis disease in healthy individuals that are latently 
infected with or exposed to the M tuberculosis pathogen. 
These fi ndings will result in further follow-up studies to assess 
whether the prognostic signatures can be used to prevent 
tuberculosis disease through targeted prophylactic treatment. 
Additional follow-up studies might focus on optimising the 
practical measurement of the signatures and understanding 
the biological signifi cance of the host genes implicated by 
the signatures.
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Figure 1: The adolescent cohort study and the Grand Challenges 6-74 study cohorts for the discovery and validation of the tuberculosis risk signature
(A) Inclusion and exclusion of participants from the adolescent cohort study and assignment of eligible progressors and controls to the training and test sets. 
(B) Inclusion and exclusion of adult household contacts of patients with lung tuberculosis from the Grand Challenges 6-74 study cohorts, and assignment of eligible 
progressors and controls. QFT=QuantiFERON TB gold in-tube assay. TST=tuberculin skin test.
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The other cohorts consisted of South African and 
Gambian participants from the Grand Challenges 
6-74 study (GC6-74) who were enrolled to independently 
validate the tuberculosis risk signature (fi gure 1). Briefl y, 
from a parent GC6-74 cohort, HIV-negative people aged 
10–60 years who had household exposure to an adult with 
sputum smear positive tuberculosis disease were enrolled 
to this study. At baseline (both sites), at 6 months (The 
Gambia only), and at 18 months (both sites), participants 
were assessed clinically and blood was collected and 
stored in PAXgene tubes. Follow-up continued for 2 years, 
and concluded on Nov 18, 2012. Among GC6-74 
participants, progressors had intrathoracic tuberculosis, 
defi ned on the basis of sputum culture, smear microscopy, 
and clinical signs. For each progressor, four controls were 
matched according to recruitment region, age category 
(≤18 years, 19–25 years, 26–35 years, or ≥36 years), sex, 
and year of enrolment.

The study protocols were approved by the relevant 
human research ethics committees (appendix 1). Written 
informed consent was obtained from participants. For 
adolescents, consent was obtained from parents or legal 
guardians of adolescents and written informed assent 
from each adolescent. In both studies, participants with 
diagnosed or suspected tuberculosis disease were 
referred to a study-independent public health physician 
for treatment according to national tuberculosis control 
programmes of the country involved.

Procedures
The analytical approach to identify and validate the 
tuberculosis risk signature is shown (fi gure 2). The 
tuberculosis risk signature was derived from mining 
RNA sequencing data generated from the ACS training 
set. The RNA sequencing based tuberculosis risk 
signature was then adapted to the quantitative real-time 
PCR (qRT-PCR) platform. The RNA sequencing and 
qRT-PCR-based signature of risk was validated by blind 
prediction on untouched samples from the ACS test set. 
The qRT-PCR-based tuberculosis risk signature was also 
validated by blind prediction on independent GC6-74 
cohort samples from South Africa and The Gambia.

For RNA sequencing analysis of the ACS training and 
test sets, RNA was extracted from PAXgene tubes of 
the ACS training set. Globin transcript depletion 
(GlobinClear, ThermoFisher Scientifi c, MA, USA) was 
followed by cDNA library preparation using the Illumina 
mRNA-Seq sample preparation kit (Illumina, CA, USA). 
RNA sequencing was done by Expression Analysis, Q2 
Solutions, NC, USA, at 30 million 50 bp paired-end reads, 
on Illumina HiSeq-2000 sequencers. Read pairs were 
aligned to the hg19 human genome using gsnap,23 which 
generated a table of gene expression abundances for each 
sample. This gene expression abundance was measured 
at the level of splice junction counts, which quantifi es the 
frequency of specifi c mRNA splicing events in expressed 
genes; this approach would help with translation to 

qRT-PCR. For simplicity, splice junction expression levels 
are referred to as “gene expression levels” throughout.

The tuberculosis risk signature was generated and was 
adapted from the original RNA sequencing-based platform 
to qRT-PCR by directly matching splice junctions in the 
signature to commercial TaqMan primer sets (Thermo 
Fisher Scientifi c; appendix 1). A complete set of qRT-PCR 
data for selected primers was generated for ACS training 
set samples with the BioMark HD multiplex microfl uidic 
instrument (Fluidigm, CA, USA). Variables in the qRT-
PCR-based version of the tuberculosis signature were then 
assigned by fi tting the model to the dataset.

RNA sequencing and qRT-PCR analysis of samples 
from the ACS test set were done as described. Before 
analysis, all test set samples were assigned random 
numerical codes that masked study timepoints and 
progressor and control status. Prediction of tuberculosis 
risk on the masked ACS test set samples was then done 
in a fully blinded manner, in parallel with RNA 
sequencing and qRT-PCR-based versions of the signature.

We blindly predicted the independent GC6-74 
validation cohorts using the qRT-PCR-based signature of 
risk. qRT-PCR analysis of samples from the South 
African and Gambian cohorts of GC6-74 was done 
as described less than 1 year after ACS validation 
analysis. Before analysis, all samples were assigned 
random numerical codes. Fully blinded predictions were 
then made with the qRT-PCR-based signature of risk.

To allow assessment of the risk signature for diagnosis 
of active disease, results from published microarray-
based studies of active tuberculosis versus latent disease 
or other disease were used.10–14 The signature was adapted 
from RNA sequencing to the Illumina platform and 
parameterised using tuberculosis cases and controls 
latently infected with M tuberculosis from the UK training 
cohort of Berry and colleagues12 (appendix 1). The 
locked-down Illumina microarray-based risk signature 
was used to make predictions in the independent test 
and validation cohorts from the study by Berry and 
colleagues,12 and from the subsequent studies.10,11,13,14

Statistical analysis
Statistical and machine learning approaches were applied 
to discover the signatures of tuberculosis risk. To generate 
the tuberculosis risk signature, we used an extension of 
the k-top-scoring pairs (k-TSP) method, which has been 
used successfully to identify cancer biomarkers.24,25 The 
k-TSP approach identifi es pairs of genes that discriminate 
better than either gene would individually.25 We replaced 
the k-TSP rank-based gene pair models with the so-called 
support vector machine (SVM)-based gene pair models 
for greater fl exibility in predictions. This modifi cation is 
similar to the k-TSP modifi cation proposed by Shi and 
colleagues,26 but holds the advantage of retaining the 
fault-tolerance and parsimony of k-TSP. For analysis, 
prospective RNA sequencing data of progressors was 
realigned to the timepoint at which active tuberculosis 

See Online for appendices

For more on the Grand 
Challenges study see http://

www.case.edu/affil/tbru/
collaborations_gates.html
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was diagnosed (fi gure 2), thereby synchronising the 
cohort with respect to outcome.

The genes that comprise the fi nal tuberculosis risk 
signature were selected in two stages, with data from the 
ACS training set. First, a large set of genes was identifi ed 
by comparing gene expression in progressors at the most 
proximal timepoint to diagnosis with that in matched 
controls. SVM models were trained on these datapoints 
for all possible pairwise combinations of risk-associated 

genes. Second, the models were fi ltered for predictive 
accuracy with the remaining prospective progressor and 
control samples. Surviving SVM models comprised the 
tuberculosis risk signature, which computes a 
“tuberculosis risk score” based on blood gene expression 
levels measured at a single timepoint. The algorithm is 
fully described (appendix 1).

These analyses were executed using R or custom 
programs written in C++. Application of fi nal 

Figure 2: Strategy for discovery and validation of the tuberculosis risk signature
(A) Flow diagram for the discovery and validation of the tuberculosis risk signature. The tuberculosis risk signature was obtained by data mining of a whole blood RNA 
sequencing dataset generated from the adolescent cohort study training set. The predictive potential of the risk signature was assessed by rigorous cross validation. 
The tuberculosis risk signature was adapted to qRT-PCR, and then the RNA sequencing and qRT-PCR versions of the signature were used to predict tuberculosis 
progression in untouched blinded samples from the adolescent cohort study test set. The qRT-PCR-based tuberculosis risk signature was then used to predict 
tuberculosis progression using untouched blinded samples from the South African and Gambian cohorts of GC6-74. (B) Synchronisation of the adolescent cohort 
study training set in terms of the clinical outcome. To ensure optimal extraction of a tuberculosis risk signature from the adolescent cohort study training set, the 
timescale of the RNA sequencing dataset was realigned according to tuberculosis diagnosis instead of study enrolment, allowing gene expression diff erences to be 
measured before disease diagnosis. Each progressor within the adolescent cohort study training set is represented by a horizontal bar. The length of the bar 
represents the number of days between study enrolment and diagnosis with active tuberculosis. During follow-up, each progressor transitioned from an 
asymptomatic healthy state (green) to pulmonary disease (red). The left graph shows alignment of PAXgene sample collection (black points) with respect to study 
enrolment. The right graph shows alignment of PAXgene sample collection with respect to diagnosis with active tuberculosis, for use in analysis. 
qRT-PCR=quantitative real-time PCR. GC6-74=Grand Challenges 6-74 study. ACS=adolescent cohort study.
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signatures to predict tuberculosis risk was carried out 
using scripts written in R or an Excel spreadsheet 
(appendix 2). Statistical evaluation of prediction 

performance was done by analysis receiver operating 
characteristic curves (ROCs) using the R package 
pROC.27
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Role of the funding source
The funders of this study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. DEZ, AP-N, TJS, ET, LMA, AA, and 
WAH had full access to all the data in the study The 
corresponding author had full access to all the data in the 
study and had fi nal responsibility for the decision to 
submit for publication.

Results
Between July 6, 2005, and April 23, 2007, we enrolled 
6363 healthy adolescents from the ACS cohort; follow-up 
was completed by February, 2009 (appendix 1). Between 
Feb 27, 2005, and Dec 14, 2010, (South Africa) and 
between March 5, 2007, and Oct 21, 2010 (The Gambia), 
we enrolled 4466 healthy individuals from the GC6-74 
cohort, of these 1197 were enrolled in the South African 
and 1948 enrolled in The Gambia (appendix 1).

46 ACS participants with microbiologically confi rmed 
tuberculosis were identifi ed as progressors (fi gure 1; 
appendix 2). For progressors, the time between sample 
collection and diagnosis with active tuberculosis (“time 
to diagnosis”) ranged from 1 to 894 days (fi gure 2; 
appendix 2). 107 control participants who were infected 
with M tuberculosis at enrolment but who remained 
healthy during 2 years of follow-up were matched to 
progressors. Before analysis, progressors and controls 
were randomly divided into a training set of 37 progressors 
and 77 controls, and a test set of nine progressors and 
30 controls (fi gures 1, 2).

Progressor and control participants in GC6-74 were 
household contacts of newly diagnosed index cases with 
pulmonary tuberculosis disease (fi gure 2). Two GC6-74 
sites, South Africa and The Gambia, had suffi  cient 

numbers of progressors and controls to allow analysis, and 
were therefore included in this study (fi gures 1, 2). 
43 progressors and 172 controls were identifi ed at the South 
African site, whereas 30 progressors and 129 controls were 
identifi ed at the Gambian site (fi gure 1; appendix 2).

RNA was isolated from all progressor and matched 
control samples of the ACS training set and analysed by 
RNA sequencing (fi gure 2; appendix 2). Data mining of 
the RNA sequencing data derived a candidate signature 
of risk for tuberculosis disease progression. The signature 
comprised paired splice junction data from 16 genes 
(appendices 1, 2). Expression of signature genes in 
samples from progressors increased as tuberculosis 
diagnosis approached (fi gure 3). Robust discrimination 
between progressors and controls based on the expression 
of the gene pairs in the signature was readily apparent 
(fi gure 3).

The predictive potential of the tuberculosis risk 
signature was shown within the ACS training set by 
cross validation (fi gure 2; appendix 1); the risk signature 
achieved 71·2% sensitivity in the 6 month period 
immediately before diagnosis, and 62·9% sensitivity 
6–12 months before diagnosis, at a specifi city of 80·6% 
(fi gure 3, table 1). During the 12–18 month period before 
diagnosis, the signature achieved 47·7% sensitivity.

To help with broad application, the tuberculosis risk 
signature was adapted to a practical platform, qRT-PCR 
(fi gure 2; appendix 2). The RNA sequencing and 
qRT-PCR versions of the tuberculosis risk signature were 
used to predict tuberculosis risk in the untouched ACS 
test set samples. This was done in a fully blinded manner, 
with all sample meta-data masked before making 
predictions. The ability of both versions of the signature 
to predict tuberculosis progression in healthy subjects 
was validated (fi gure 3, table 2).

To determine whether inclusion of a larger number of 
genes would have increased accuracy of predictions, 
the performance of a random forest-based classifi er 
comprised of 631 genes was assessed; the outcome was 

Figure 3: The tuberculosis risk signature and validation by prediction of 
tuberculosis disease progression in the untouched ACS test set and the 
independent GC6-74 cohorts
(A) Heatmap depicting relative expression level of genes comprising the 
tuberculosis risk signature in progressors compared with controls. Higher 
expression in progressors relative to controls is indicated by intensity of red 
colour. Expression is measured in mean (SD). Individual heatmap rows represent 
distinct splice junctions of individual genes that comprise the signature. Relative 
expression in each of four 180 day time windows before tuberculosis diagnosis is 
shown. (B) The tuberculosis risk signature was generated by assessing multiple 
gene-pair interactions; four representative gene-pair signatures are shown. In 
each scatterplot, the normalised expression of one gene within the pair is plotted 
against that of the other gene, for all ACS training set datapoints. The black dots 
represent control samples, whereas the red dots represent progressor samples. 
The dotted black line indicates the optimum linear decision boundary for 
discriminating progressors from controls. (C) Receiver operating characteristic 
curves depicting the predictive potential of the tuberculosis risk signature for 
discriminating progressors from controls. Each receiver operating characteristic 
curve corresponds to a 180 day interval before tuberculosis diagnosis. Prediction 
performance was assessed by 100 four-to-one training-to-test splits of the ACS 
training set. (D) Receiver operating characteristic curves for blind prediction of 
tuberculosis disease progression in untouched ACS test set samples using the 
RNA sequencing based (dotted line) or qRT-PCR-based (solid line) signature. 
(E) Blind prediction on the combined GC6-74 cohort (blue), South African cohort 
(purple) or Gambian cohort (green). (F) Stratifi cation of prediction on the overall 
GC6-74 cohort by time before tuberculosis diagnosis. ACS=adolescent cohort 
study. GC6-74=Grand Challenges 6-74 study.

ROC AUC (95% CI) Sensitivity (95% CI) Threshold

By 6 month period

1–180 0·79 (0·76–0·82) 71·2% (66·6–75·2) 61%

181–360 0·771 (0·75–0·79) 62·9% (59·0–66·4) 61%

361–540 0·726 (0·70–0·76) 47·7% (42·9–52·5) 61%

541–720 0·540 (0·49–0·59) 29·1% (23·1–35·9) 61%

>720 0·496 (0·43–0·56) 5·4% (2·4–13·0) 61%

By 12 month period

1–360 0·779 (0·76–0·80) 66·1% (63·2–68·9) 61%

360–720 0·647 (0·62–0·673) 37·5% (33·9–41·2) 61%

Total time period 0·743 (0·73–0·76) 58·4% (56·1–60·7) 61%

Sensitivity values are reported at a specifi city of 80·0% (95% CI 78·6–81·4). ROC AUC=area under receiver operating 
characteristic curve. ACS=adolescent cohort study.

Table 1: Cross-validation performance of the tuberculosis risk signature in the ACS training set by days 
before tuberculosis diagnosis
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equivalent to when the tuberculosis risk signature was 
used for classifi cation (appendices 1, 2).

For independent validation, the qRT-PCR-based signature 
was used to predict tuberculosis progression using samples 
collected from healthy participants in the GC6-74 adult 
household contact cohorts from South Africa and The 
Gambia (fi gure 2). Predictions were made in a blinded 
manner. The ability of the signature to predict tuberculosis 
progression in healthy participants were validated in these 
independent cohorts, irrespective of whether these were 
analysed individually or collectively (p<0·0001; fi gure 3, 
table 2). As for the ACS, the signature had greater sensitivity 
for predicting tuberculosis in samples collected closer to 
the time of diagnosis (fi gure 3, table 2).

Because the sensitivity of the tuberculosis risk signature 
increased as the time of diagnosis approached, we 
assessed performance of the risk signature for diagnosis 
of active tuberculosis disease. We did these analyses after 
adapting the signature to Illumina microarrays using 
data from the UK training cohort of Berry and colleagues 
(appendices 1, 2),12 which enabled use of published 
datasets.10–14 The signature readily diff erentiated active 
tuberculosis from latent infection in adult cohorts from 
the UK, South Africa, and Malawi, including in 
populations that were co-infected with HIV (appendices 
1, 2). The signature also discriminated active tuberculosis 
from other pulmonary diseases (appendices 1, 2). Despite 
being derived from adolescents, the signature 
discriminated active, culture confi rmed, tuberculosis 
from latent M tuberculosis infection and from other 
diseases in childhood (appendices 1, 2). Finally, applying 
the signature to data from a treatment study10 showed that 
the active tuberculosis signature gradually disappears 
during 6 months of therapy (appendix 1, 2).

Discussion
Roughly one third of the world’s population might harbour 
latent M tuberculosis infection and is at risk of active 
disease. We have identifi ed a gene expression signature for 

predicting the risk of tuberculosis disease progression. 
This signature was discovered in a longitudinal analysis of 
South African adolescents with latent M tuberculosis 
infection who either developed tuberculosis disease or 
remained healthy. The signature was then validated in 
blinded samples from untouched adolescents of the same 
parent cohort. The signatures were again validated, in 
independent cohorts of longitudinally followed up 
household contacts of patients with tuberculosis disease 
from South Africa and The Gambia, who either developed 
tuberculosis disease or remained healthy. These results 
show that it is possible to predict progression from latent 
to active disease with whole blood gene expression 
measurements at any single timepoint up to 18 months 
before tuberculosis disease manifests.

The tuberculosis risk signature was discovered using 
RNA sequencing, a transcriptome analysis technology 
that is quantitative, sensitive, and unbiased.28 The 
signature was formulated using a framework termed 
SVM, an extension of the k-TSP approach,24 which 
robustly generates a tuberculosis risk score from gene 
expression data, with simple arithmetics (appendix 2). 
The signature was adapted from RNA sequencing to 
qRT-PCR, a more targeted and aff ordable technology. 
The power of the approach was shown by blinded 
validation of the qRT-PCR-based signature in the 
independent cohorts.

The tuberculosis risk signature predicted tuberculosis 
disease progression despite marked diversity between the 
ACS and GC6-74 cohorts. This result is encouraging in 
view of the diff erent age ranges (adolescents vs adults), 
diff erent infection or exposure status, distinct ethnic origin 
and genetic backgrounds,29,30 diff ering local epidemiology,1 
and diff ering circulating strains of M tuberculosis31 between 
South Africa and The Gambia. Distinct mechanisms of 
progression might be elucidated when specifi c subgroups 
of progressors are analysed (eg, early vs late progressors in 
GC6-74). Targeted analyses to identify distinct mechanisms 
of progression are underway.

Platform Days before 
tuberculosis 
diagnosis

ROC AUC (95% CI) ROC p value Sensitivity (95% CI) Specifi city (95% CI) Threshold

ACS test

All ACS test RNA sequencing ·· 0·69 (0·52–0·85) 0·018 41·7% (22·3–64·5) 89·9% (82·6–94·0) 82%

All ACS test qRT-PCR ·· 0·69 (0·54–0·85) 0·0095 46·7% (27·8–66·6) 90·9% (83·8–94·7) 76%

GC6-74

All GC6-74 qRT-PCR 1–720 0·69 (0·63–0·76) <0·0001 48·8% (39·9–57·7) 82·8% (78·7–86) 76%

South Africa qRT-PCR 1–720 0·72 (0·63–0·81) <0·0001 43·2% (31·7–55·5) 87·7% (82·7–91·2) 79%

The Gambia qRT-PCR 1–720 0·67 (0·56–0·78) 0·001 50·0% (37·1–62·8) 81·9% (75·5–86·7) 78%

All GC6-74 qRT-PCR 1–360 0·72 (0·64–0·80) <0·0001 53·7% (42·6–64·3) 82·8% (78·7–86·0) 76%

All GC6-74 qRT-PCR 361–720 0·65 (0·53–0·76) 0·0048 39·3% (25·8–54·8) 85·5% (81·7–88·5) 79%

ROC AUC=area under receiver operating characteristic curve. qRT-PCR=quantitative real-time PCR. GC6-74=Grand Challenges 6-74 study. ACS=adolescent cohort study.

Table 2: Blind prediction performance of the tuberculosis risk signature on the ACS test set by RNA sequencing and qRT-PCR and on the GC6-74 cohorts 
from South Africa and The Gambia by qRT-PCR
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To explore potential application of the signature for 
targeted preventive therapy, we estimated the relative risk 
for tuberculosis disease between signature positive and 
negative people from a representative adult population 
from South Africa, where tuberculosis is endemic. The 
relative risk of tuberculosis disease is about 2 when IGRA 
or TST is used,32 whereas the relative risk using our risk 
signature was between 6 and 14. Moreover, this risk 
signature would aid in detection of asymptomatic or 
undiagnosed tuberculosis disease, or both. For example, 
when applied to combined data from four studies of 
HIV-uninfected South African adults10–13 involving 
130 prevalent tuberculosis cases and 230 controls, the 
signature discriminated between patients with active 
tuberculosis and uninfected or healthy controls infected 
with M tuberculosis with 87% sensitivity and 97% specifi city.

Although our focus was on prospective prediction of 
tuberculosis disease, we also showed that the risk 
signature was excellent for diff erentiating tuberculosis 
disease from latent infection and from other disease 
states. This ability to diagnose tuberculosis disease was 
not markedly aff ected by HIV status. The risk signature 
could also diagnose culture positive childhood 
tuberculosis, but not culture negative childhood disease.33 
These results suggest that the risk signature might 
represent bacterial load in the lung because culture 
positive childhood tuberculosis is likely associated with 
higher bacterial loads compared with culture negative 
disease. An association between the risk signature and 
bacterial load was further supported by meta-analysis of a 
published treatment study,10 in which the signature 
relaxed during 6 months of antimicrobial therapy. It is 
presently not known whether the risk signature will be 
useful for predicting treatment failure or recurrence.

While enrichment analysis of published blood 
signatures for active tuberculosis implicates various 
biological processes in the disease, the sole gene module 
that was over-represented in the risk signature was 
interferon response (appendix 2). Overlap between 15 of 
the 16 genes in our prospective tuberculosis risk 
signature and the 393 gene signature of active 
tuberculosis disease from Berry and colleagues12 
suggests that chronic peripheral activation of the 
interferon response precedes the onset of active disease 
and the infl ammatory manifestations of tuberculosis 
disease shown by previously published gene expression 
studies.10–14 Although additional research is needed to 
understand the functional role of interferon responses 
during tuberculosis progression, pathogen induction of 
type I interferons and their detrimental eff ects on 
immunity to tuberculosis have been shown in several in-
vivo studies in mice34–36 and in-vitro experiments of 
human cells.37 Nevertheless, not all interferon response 
genes in the risk signature might be associated with a 
poor outcome, since genes such as GBP1, STAT1, and 
TAP1 might have a protective role during tuberculosis 
infection (appendix 2).

Our predictive signature was obtained from 
transcriptomic analysis of peripheral whole blood. This 
compartment, although conveniently sampled, might 
not accurately represent pathogenic events in the lung, 
mainly aff ected by tuberculosis disease. Irrespective of 
this, circulating white blood cells can serve as sentinels 
of lung pathophysiology, as transcriptional changes 
occur when the cells migrate through this organ. To 
explore a possible cell-type specifi c origin of the risk 
signature, we used data from published global gene 
expression in whole blood and sorted peripheral blood 
mononuclear cells, monocytes, neutrophils, and T cells 
from healthy controls and patients with tuberculosis.11 
Diff erential expression of the risk signature genes 
between healthy controls and patients with tuberculosis 
was similar in whole blood and peripheral blood 
mononuclear cells (appendix 2), suggesting that 
contribution of granulocytes to the risk signature is 
redundant. Consistent with this hypothesis, diff erential 
expression of risk signature genes was apparent in 
monocytes and neutrophils. When compared to the 
diagnostic signature of Berry and colleagues,12 reported 
to be derived from neutrophils, these results suggest 
that progression to active tuberculosis involves more 
diverse cell types.

So far, Sloot and colleagues38 published the only report 
of prospective associations between blood gene expression 
and tuberculosis disease risk. With a predefi ned 141 gene 
panel, peripheral blood mononuclear cell RNA expression 
in 15 HIV-positive drug users who developed active 
tuberculosis disease was compared with 16 who did not 
develop tuberculosis. Four genes assayed showed 
nominal expression diff erences (unadjusted p<0·05) and, 
when combined, two genes, IL-13 and AIRE, fi t the data 
(area under receiver operating characteristic curve 
fi t=0·8). The association between these genes and 
tuberculosis progression was not validated in a test set or 
independent cohort; none of the four genes showed 
diff erences between progressors and controls in our 
whole blood RNA sequencing datasets.

Our results, showing that blood-based signatures in 
healthy individuals can predict progression to active 
tuberculosis disease, pave the way for the establishment 
of diagnostic methods that are scalable and inexpensive. 
An important fi rst step would be to test whether the 
signature can predict tuberculosis disease in the general 
population, rather than the select populations included in 
this project; for example, the risk of tuberculosis disease 
in our populations was much higher than the lifetime 
risk of 10% encountered in the general population. The 
newly described signature holds potential for highly 
targeted preventive therapy, and therefore for interrupting 
the worldwide epidemic.
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